We thank Dr W. J. Muizebelt (Akzo Research Laboratories) for donating the crystals and Dr A. J. M . Duisenberg for collecting the data.

References

Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321324.

Horner, L. \& Dickerhof, K. (1983). Chem. Ber. 116, 16031614.

Kouwizzer, M. L. C. E., van Euck, B. P. \& Muizebelt, W. J. (1991). Acta Cryst. C47, 634-636.

Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984.
McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst. A31, 245-249.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Spek, A. L. (1982). The EUCLID Package. In Computational Crystallography, edited by D. Sayre, p. 528. Oxford: Clarendon Press.

Acta Cryst. (1991). C47, 2472-2474

Structure of 5-Chloro-2,4,6-trifluoroisophthalonitrile*

By Doyle Britton
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

(Received 15 April 1991; accepted 10 May 1991)

Abstract

C}_{6} \mathrm{ClF}_{3}(\mathrm{CN})_{2}, M_{r}=216 \cdot 55\), monoclinic, $P 2_{1} / c, \quad a=10.266$ (3), $\quad b=14.848$ (6), $\quad c=$ 11.537 (3) $\AA, \beta=108.83$ (3$)^{\circ}, Z=8$ (two molecules in the asymmetric unit), $V=1664$ (2) $\AA^{3}, \quad D_{x}=$ 1.728 (2) $\mathrm{g} \mathrm{cm}^{-3}$, Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$, $\mu=4.60 \mathrm{~cm}^{-1}, \quad F(000)=848, \quad T=297(2) \mathrm{K}, \quad R=$ 0.053 for 2259 unique observed reflections with $I>$ $\sigma(I)$. The bond lengths and angles are normal, except that one ring is slightly puckered and in both molecules about half of the substituents are bent out of the mean plane of the ring by 1.0 to 2.5°. Three short intermolecular distances can be seen in the packing.

Experimental. The compound was obtained from Dr Robert Battershell of the Diamond Shamrock Corp.; crystals suitable for X-ray diffraction were found in the original sample. A colorless crystal $0.10 \times 0.25 \times$ 0.60 mm , mounted in air, was used for the data collection. Data were collected on an Enraf-Nonius CAD-4 diffractometer equipped with a graphite monochromator. 22 reflections with $10<\theta<14^{\circ}$ were used to determine the cell parameters. Systematic extinctions ($h 0 l, l$ odd; $0 k 0, k$ odd) uniquely determined the space group. Data were collected, using $\omega / 2 \theta$ scans, in the range $0<\theta<25^{\circ}$ for all of one octant and half of a second (ranges: $h,-12$ to 4; $k, 0$ to $17 ; l,-13$ to 13). The intensities of 4429 different reflections were measured. Three check reflections measured every 6000 s of exposure time showed a linear decrease in intensity of 45% over the

[^0]course of the data collection; a correction was made for this decay. After absorption corrections were made using the program DIFABS (Walker \& Stuart, 1983; transmission factors 0.73 to 1.10), equivalent reflections were combined to give 2924 independent reflections ($R_{\mathrm{int}}=0.037$) of which the 2259 with $I>$ $\sigma(I)$ were used in the calculations. The structure was solved by direct methods (MITHRIL, Gilmore, 1984) and refined with full-matrix least-squares refinement on F 's. There are two molecules in the asymmetric unit. All atoms were given anisotropic thermal parameters. Refinement converged with $R=$ $0.053, w R=0.056$, and $S=1 \cdot 22 ; w=1 / \sigma^{2}(F)$ was calculated from $\sigma^{2}(I)=\sigma^{2}\left(I_{c}+(0.05)^{2}\right.$, where $\sigma\left(I_{c}\right.$ is the standard deviation in I based on counting statistics alone. In the final cycle of refinement $(\Delta / \sigma)_{\max }=0.03, \quad(\Delta \rho)_{\max }=0.23$ and $(\Delta \rho)_{\text {min }}=$ $-0.31 \mathrm{e} \AA^{-3}$. Atomic scattering factors and anomalous-dispersion corrections for all atoms were taken from International Tables for X-ray Crystallography (1974, Vol. IV). The computer programs used were from TEXSAN (Molecular Structure Corporation, 1985). The final positional parameters are given in Table $1 . \dagger$

[^1](c) 1991 International Union of Crystallography

Table 1. Positional and isotropic equivalent thermal parameters

$B_{\mathrm{cq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cl} A$	0.8122 (3)	$0 \cdot 3335$ (3)	$0 \cdot 4829$ (3)	3.4 (1)
C2A	0.7432 (3)	$0 \cdot 3059$ (2)	$0 \cdot 5618$ (3)	$3 \cdot 5$ (1)
C3A	0.6775 (3)	$0 \cdot 3655$ (3)	0.6151 (3)	$3 \cdot 8$ (1)
C 4 A	0.6827 (3)	0.4555 (3)	0.5874 (3)	3.9 (1)
C5A	0.7512 (3)	$0 \cdot 4872$ (2)	$0 \cdot 5104$ (3)	$3 \cdot 8$ (1)
C6A	0.8140 (3)	0.4245 (3)	$0 \cdot 4604$ (3)	$3 \cdot 7$ (2)
Cl1A	0.8816 (4)	0.2704 (3)	0.4278 (4)	4.5 (2)
N 1 A	0.9359 (4)	$0 \cdot 2224$ (3)	$0 \cdot 3845$ (4)	7.0 (2)
F2A	0.7424 (2)	$0 \cdot 2185$ (1)	$0 \cdot 5877$ (2)	$5 \cdot 1$ (1)
C13A	0.6049 (4)	$0 \cdot 3356$ (3)	$0 \cdot 6970$ (4)	4.7 (2)
N3 A	0.5488 (4)	$0 \cdot 3126$ (3)	0.7587 (4)	6.8 (2)
F4A	0.6171 (2)	$0 \cdot 5148$ (2)	0.6362 (2)	5.8 (1)
Cl 5 A	0.7569 (1)	0.59955 (8)	0.4793 (1)	6.61 (6)
F6A	0.8834 (2)	$0 \cdot 4522$ (1)	$0 \cdot 3871$ (2)	$5 \cdot 0$ (1)
C1 B	0.6363 (3)	0.9100 (2)	$0 \cdot 4803$ (3)	$3 \cdot 4$ (1)
C2B	0.6493 (3)	$0 \cdot 8376$ (2)	0.5574 (3)	$3 \cdot 3$ (1)
C3B	0.7600 (3)	$0 \cdot 8280$ (2)	0.6622 (3)	$3 \cdot 3$ (1)
C4B	0.8613 (3)	$0 \cdot 8941$ (2)	0.6877 (3)	$3 \cdot 3$ (1)
C5B	0.8558 (3)	0.9667 (2)	0.6124 (3)	$3 \cdot 4$ (1)
C6B	0.7419 (3)	0.9729 (2)	$0 \cdot 5096$ (3)	$3 \cdot 7$ (1)
Cl1B	0.5177 (4)	0.9215 (3)	$0 \cdot 3731$ (3)	$4 \cdot 4$ (2)
N1 B	0.4222 (4)	0.9322 (3)	$0 \cdot 2921$ (3)	$6 \cdot 2$ (2)
F2B	0.5529 (2)	0.7743 (1)	0.5289 (2)	$4 \cdot 7$ (1)
C13B	0.7727 (4)	0.7525 (3)	0.7428 (3)	$4 \cdot 1$ (2)
N3 B	0.7853 (4)	0.6941 (3)	$0 \cdot 8086$ (4)	6.4 (2)
F4B	0.9682 (2)	$0 \cdot 8858$ (1)	0.7893 (2)	$4 \cdot 66$ (9)
Cl5B	0.9839 (1)	1.04481 (7)	$0 \cdot 6454$ (1)	$5 \cdot 17$ (5)
F6B	0.7304 (2)	1.0427 (2)	0.4349 (2)	$5 \cdot 7$ (1)

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$

C 1 A-C2A	1.384 (5)	Cl B-C2B	1.375 (5)
$\mathrm{C} 1 A-\mathrm{C} 6 A$	1.377 (5)	C1 B - C 6 B	1.387 (5)
$\mathrm{C} 1 A-\mathrm{C} 11 A$	1.444 (5)	$\mathrm{C} 1 B-\mathrm{Cl1B}$	1.439 (5)
$\mathrm{C} 2 A-\mathrm{C} 3 A$	1.372 (5)	$\mathrm{C} 2 B-\mathrm{C} 3 B$	1.374 (5)
$\mathrm{C} 2 A-\mathrm{F} 2 A$	1.332 (4)	$\mathrm{C} 2 B-\mathrm{F} 2 B$	1.326 (4)
$\mathrm{C} 3 A-\mathrm{C} 4 A$	1.379 (5)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	1.390 (5)
$\mathrm{C} 3 A-\mathrm{C} 13 A$	1.449 (5)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{Cl} 3 B$	1.435 (5)
$\mathrm{C} 4 A-\mathrm{C} 5 A$	1.381 (5)	$\mathrm{C} 4 B-\mathrm{C} 5 B$	1.374 (5)
$\mathrm{C} 4 A-\mathrm{F} 4 A$	1.338 (4)	$\mathrm{C} 4 B-\mathrm{F} 4 B$	1.328 (4)
C5A-C6A	$1 \cdot 362$ (5)	$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 6 \mathrm{~B}$	1.374 (5)
$\mathrm{C} 5 A-\mathrm{Cl} 5 A$	1.712 (4)	$\mathrm{C} 5 B-\mathrm{Cl} 5 B$	1.702 (3)
$\mathrm{C} 6 A-\mathrm{F} 6 A$	1.335 (4)	C6B-F6B	1.330 (4)
C11A-N1A	$1 \cdot 117$ (5)	$\mathrm{C} 11 B-\mathrm{N} 1 B$	1.126 (4)
$\mathrm{C} 13 A-\mathrm{N} 3 A$	$1 \cdot 105$ (5)	C13B-N3B	$1 \cdot 133$ (5)
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 6 A$	$117 \cdot 1$ (3)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 6 B$	117.6 (3)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	$122 \cdot 2$ (3)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	122.0 (3)
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{C} 4 A$	117.4 (3)	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{C} 4 B$	117.6 (3)
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	123.0 (3)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	123.0 (3)
$\mathrm{C} 4 A-\mathrm{C} 5 A-\mathrm{C} 6 A$	116.7 (3)	C4B-C5B-C6B	116.6 (3)
$\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 5 A$	$123 \cdot 6$ (3)	$\mathrm{C} 1 B-\mathrm{C} 6 B-\mathrm{C} 5 B$	123.1 (3)
$\mathrm{Cl} A-\mathrm{Cl1} A-\mathrm{N} 1 A$	179.1 (5)	$\mathrm{Cl} B-\mathrm{Cl1B-N1B}$	177.2 (4)
$\mathrm{C} 3 A-\mathrm{Cl} 3 A-\mathrm{N} 3 A$	$179 \cdot 5$ (4)	$\mathrm{C} 3 B-\mathrm{C} 13 B-\mathrm{N} 3 B$	178.2 (4)

The thermal ellipsoids and the labelling of the atoms are shown for molecule A in Fig. 1; a similar figure for molecule B is included in the Supplementary Material. Bond lengths and angles are given in Table 2; they are normal within experimental error. The ring in molecule A is planar within experimental error, but the substituents are bent out of the mean plane of the ring by $+0 \cdot 4,+1 \cdot 3,-0 \cdot 1,-1 \cdot 4,+0 \cdot 4$, and $+1.4^{\circ}$ on atoms $\mathrm{Cl} A$ to $\mathrm{C} 6 A$, respectively, with e.s.d.'s of approximately $0 \cdot 3^{\circ}$. The ring in molecule B is slightly puckered, with the substituents bent out of
the mean plane of the ring by $-2 \cdot 6,+2 \cdot 4,+0 \cdot 4$, $-1 \cdot 2,+1 \cdot 0$, and -0.3° on atoms ClB to $\mathrm{C} 6 B$, respectively.

The packing is shown in Fig. 2. With the van der Waals radii given by Nyburg \& Faerman (1985) plus $1.70 \AA$ as the radius for carbon, there are six intermolecular distances shorter than the expected van der Waals distances. Only three of these, however, involve a shortening of more than $0 \cdot 1 \AA$. These are: the $1 A$ nitrile pointing towards the middle of a $\mathrm{C} 4 B-\mathrm{F} 4 B$ bond with an $\mathrm{N} 1 A \cdots \mathrm{C} 4 B$ distance of $3 \cdot 022(5) \AA$; the $1 B$ nitrile pointing towards the middle of a $\mathrm{C} 6 A-\mathrm{F} 6 A$ bond with an $\mathrm{N} 1 B \cdots \mathrm{C} 6 A$ distance of $3 \cdot 134$ (5) \AA; an $\mathrm{N} 3 B \cdots \mathrm{Cl} 5 B$ contact of $3 \cdot 162$ (4) \AA where the $\mathrm{C} 13 B-\mathrm{N} 3 B \cdots \mathrm{C} 15 B$ angle is $124 \cdot 5(4)^{\circ}$ and the $\mathrm{N} 3 B \cdots \mathrm{C} 15 B-\mathrm{C} 5 B$ angle is $176 \cdot 8(5)^{\circ}$.

Related literature. Structures of tetrafluorophthalonitrile (Britton, 1988), tetrafluoroterephthalonitrile (van Rij \& Britton, 1981; Dunitz, Schweizer, \& Seiler, 1982; Seiler, Schweizer, \& Dunitz, 1984), tetrachlorophthalonitrile (Britton, 1981a), tetrachloroisophthalonitrile and -terephthalonitrile (Britton, $1981 b$).

Fig. 1. $\mathrm{ClF}_{3} \mathrm{C}_{6}(\mathrm{CN})_{2}$, molecule A. Thermal ellipsoids are shown at the 50% probability level. Molecule B does not look significantly different.

Fig. 2. The packing of $\mathrm{ClF}_{3} \mathrm{C}_{6}(\mathrm{CN})_{2}$. The atoms involved in the short intermolecular contacts, NIA $\cdots \mathrm{C} 4 B$, NI $B \cdots \mathrm{C} 6 A$, and $\mathrm{N} 3 B \cdots \mathrm{C} 15 B$, are shown slightly larger than the remaining atoms.

I thank Dr Robert Battershell for the sample of the compound.

References

Britron, D. (1981a). Cryst. Struct. Commun. 10, 1509-1512. Britron, D. (1981b). Cryst. Struct. Commun. 10, 1501-1508. Britron, D. (1988). Acta Cryst. C44, 1020-1022.
Dunitz, J. D., Schweizer, W. B. \& Seiler, P. (1982). Helv. Chim. Acta, 66, 123-133.

Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Molecular Structure Corporation (1985). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200A Research Forest Drive, The Woodlands, TX 77381, USA.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Rij, C. van \& Britton, D. (1981). Cryst. Struct. Commun. 10, 175-178.
Seiler, P., Schweizer, W. B. \& Dunitz, J. D. (1984). Acta Cryst. B40, 319-327.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Redetermination of the Structure of Guanine Hydrochloride Monohydrate

By J. Maixner
Institute of Chemical Technolgoy, Praha, Czechoslovakia

and J. Zachová
Institute of Physics, Charles University, Praha, Czechoslovakia
(Received 30 July 1990; accepted 1 May 1991)

Abstract

C}_{5} \mathrm{H}_{6} \mathrm{~N}_{5} \mathrm{O}^{+} . \mathrm{Cl}^{-} . \mathrm{H}_{2} \mathrm{O}, M_{r}=205 \cdot 6\), monoclinic, $\quad P 2_{1} / c, \quad a=4.479(1), \quad b=9.995(1), \quad c=$ $19 \cdot 304$ (2) $\AA, \beta=107 \cdot 90(1)^{\circ}, V=819 \cdot 1$ (2) $\AA^{3}, Z=$ $4, \quad D_{m}=1.664, \quad D_{x}=1.667 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \quad \mu=4.38 \mathrm{~cm}^{-1}, \quad F(000)=424, \quad T=$ 293 (1) K, $R=0.034, w R=0.043$ for 1736 observed reflections with $I>1.96 \sigma(I)$. The guanine molecule is non-planar with a dihedral angle of $1.7(1.5)^{\circ}$ between the imidazole and the pyrimidine rings. The base rings are protonated at $\mathrm{N}(7)$ and form a hydrogen network with two modes of pairing [N(7)$\mathrm{H} 7 \cdots \mathrm{O}(1)$ and $\mathrm{N}(10)-\mathrm{H} 101 \cdots \mathrm{~N}(3)]$. Several interactions of the type $D-\mathrm{H} \cdots A$ are noted between purine cations, water and chlorine anions.

Experimental. Crystals were grown by cooling a solution of the title compound in 18% hydrochloric acid in a special crystallizer with reversible stirring of the crystal seeds (starting temperature was about 308 K , cooling gradient 0.1 K per day). As grown the crystals are isometric, colourless and very often twinned, with maximal crystal dimensions of $5 \times 5 \times 3 \mathrm{~mm}$. The density was determined by flotation in toluenemethylene iodide mixtures. A crystal of size 0.2×0.3 $\times 0.45 \mathrm{~mm}$ was selected and mounted on an EnrafNonius CAD-4 diffractometer. The unit-cell parameters were determined by a least-squares fit of the adjusted angular settings of 25 reflections with $17<$ $\theta<18^{\circ}$ constrained to a monoclinic cell. The space group was determined by systematic absences ($0 k 0$
with k odd, $h 0 l$ with l odd) in the diffractometercollected intensity data. Intensities were collected with graphite-monochromated Mo $K \alpha$ radiation. The $\omega-2 \theta$ technique was used with a scan width of $(0.75+0.35 \tan \theta)^{\circ}$ extended 25% on each side for background measurement. The set of 2234 unique reflections, 1736 of which had $I>1 \cdot 96 \sigma(I)$, was obtained from 2810 reflections measured in the range $1<2 \theta<60^{\circ} \quad(0<h<8,0<k<13,-30<l<30$, $\sin \theta / \lambda<0.7027 \AA^{-1}, R_{\text {int }}=0.02$). The angular positions of three standard reflections $(0,0,18,0,10,0$, $\overline{5}, 2,14$) were checked after measuring 500 reflections, the intensity of reflection 121 was monitored after every 6000 s . The position of the crystal was stable and the monitored intensities showed a very slight decrease of about 0.2%. The intensity data were corrected for Lorentz and polarization but not for absorption effects.

The structure was solved from Patterson and $\Delta \rho$ maps and refined on F by the full-matrix leastsquares method with anisotropic thermal motion. All H -atom positions were found from $\Delta \rho$ maps and included in the model. Final refinement was performed with 151 variables including all positional parameters, anisotropic displacement parameters for the non-H atoms, isotropic displacement parameters for the H atoms, one scale factor and the isotropic secondary-extinction coefficient of 4.3×10^{-7}. The final agreement factors were $R=0.034, w R=0.043$ and $S=1 \cdot 42$. The ratio of the maximum least-

[^0]: * 5-Chloro-2,4,6-trifluoro-1,3-benzenedicarbonitrile.

[^1]: \dagger Lists of anisotropic thermal parameters, complete bond angles, deviations from the mean planes of the benzene rings, intermolecular distances, observed and calculated structure factors, and a figure showing the thermal ellipsoids in molecule B have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54237 (30 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

